A new class of realisations of the Lie algebra so(q, 2n-q)

This article has been downloaded from IOPscience. Please scroll down to see the full text article.
1988 J. Phys. A: Math. Gen. 21289
(http://iopscience.iop.org/0305-4470/21/2/010)
View the table of contents for this issue, or go to the journal homepage for more

Download details:
IP Address: 129.252.86.83
The article was downloaded on 01/06/2010 at 06:00

Please note that terms and conditions apply.

A new class of realisations of the Lie algebra $\operatorname{so}(q, 2 n-q)$

Č Burdík ${ }^{\dagger}$
Laboratory of Theoretical Physics, Joint Institute for Nuclear Research, 141980 Dubna, USSR

Received 30 December 1986, in final form 19 June 1987

Abstract

The method for constructing boson realisations of semisimple Lie algebras formulated in our previous paper is applied to the case of so $(q, 2 n-q), q=2,3, \ldots, n$. The realisations are expressed by means of certain recurrence formulae in terms of ($2 n-2$) boson pairs and generators of the subalgebra $g l(1, \mathbb{R}) \oplus \operatorname{so}(q-1,2 n-q-1)$. They are skew-Hermitian and Schurean.

1. Introduction

Canonical (boson) realisations of Lie algebras are used for studying physical systems with symmetries in the framework of the canonical formalism (see, e.g., Barut and Raczka 1977). They are especially useful in connection with the method of collective variables, e.g. in nuclear physics (Moshinsky 1984). Moreover, they play a role in purely mathematical investigations (e.g. in connection with the models for su(3) in terms of so ($n, 2$) and so* $(2 n)$ algebras (Le Blanc and Rowe 1986)).

In a recent paper (Burdík 1985) the method of constructing realisations for an arbitrary real semisimple algebra g was presented. It was shown that any induced representation can be rewritten as the so-called boson representation. The construction starts from a decomposition $g=n_{+}^{b} \oplus g_{0}^{b} \oplus n_{-}^{b}$ of g, which is a simple generalisation of the triangle decomposition (Dixmier 1984); it employs substantially induced representations (Zhelobenko and Stern 1983) of g with respect to a suitable representation σ of the subalgebra $g_{0}^{b} \oplus n_{-}^{b}$. It has been proved that the method gives realisations which possess two properties permitting their application in the representation theory. They are skew-Hermitian and Schurean.

In subsequent papers (Burdík 1986a, b) we have applied this method to the Lie algebras $\operatorname{gl}(n+1, \mathbb{R})$ and $\operatorname{sp}(n, \mathbb{R})$. In the case of the algebras $\operatorname{gl}(n+1, \mathbb{R})$ we have constructed recurrence formulae which give realisations of $\operatorname{gl}(n+1, \mathbb{R})$ in terms of $r(n+1-r)$ canonical pairs and generators of the subalgebra $\operatorname{gl}(r, \mathbb{R}) \oplus \operatorname{gl}(n+1-r, \mathbb{R})$ for $r=1,2, \ldots, n$. For the $\operatorname{sp}(n, \mathbb{R})$ we have obtained recurrence formulae in terms of $r\left(2 n-\frac{3}{2} r+\frac{1}{2}\right)$ canonical pairs and generators of the subalgebra $\operatorname{gl}(r, \mathbb{R}) \oplus \operatorname{sp}(n-r, \mathbb{R})$.

In the present paper, we apply the method of Burdík (1985) to the case of algebras so $(q, 2 n-q)$ which are the real forms of the complex algebras so $(2 n, \mathbb{C})$. We use the explicit forms of the triangle decompositions for the construction of this real algebra which we have previously constructed (Burdík 1986c). We obtain recurrence formulae

[^0]which give realisations of $\operatorname{so}(q, 2 n-q)$ in terms of $2 n-2$ canonical pairs and generators of the subalgebra $\mathrm{gl}(1, \mathbb{R}) \oplus \operatorname{so}(q-1,2 n-q-1)$. The resulting realisations are Schurean and skew-Hermitian. The calculation can be adapted easily for the algebras so $(q, 2 n+1-q)$ also.

The paper is organised as follows. All necessary prerequisites are listed in § 2 while $\S 3$ contains the main results. Here the new wide families of realisations are derived. In $\S 4$ the results are discussed and, in particular, a comparison is made with the realisations which were derived by Exner and Havlíček (1977).

2. Preliminaries

The Weyl algebra $W_{2 N}$ is the associative algebra over \mathbb{C} with identity generated by $2 N$ elements, p_{i}, q_{i}, where $i=1,2, \ldots, N$, which satisfy the relations

$$
\begin{equation*}
\left[p_{i}, q_{j}\right]=\delta_{i j} \quad\left[p_{i}, p_{j}\right]=\left[q_{i}, q_{j}\right]=0 \tag{1}
\end{equation*}
$$

for any $i, j=1,2, \ldots, N$.
Let g, g_{0} be real Lie algebras. By \tilde{g}, \tilde{g}_{0} we denote their complexifications. Furthermore, $U(\tilde{g}), U\left(\tilde{g}_{0}\right)$ are the enveloping algebras of these complexifications.

Definition. A realisation of a Lie algebra g is a homomorphism

$$
\begin{equation*}
\tau: g \rightarrow W_{2 N} \otimes U\left(\tilde{g}_{0}\right) \tag{2}
\end{equation*}
$$

The homomorphism r extends naturally to the homomorphic mapping (denoted by the same symbol τ) of the enveloping algebra $U(\tilde{g})$ into $W_{2 N} \otimes U\left(\tilde{g}_{0}\right)$.

Definition. Let $Z(\tilde{g})$ be the centre of $U(\tilde{g})$. A realisation is called Schurean or Schur-realisation if all central elements $C \in Z(\tilde{g})$ are realised by $1 \otimes C_{0}$ where the C_{0} are central elements of the enveloping algebra $U\left(\tilde{g}_{0}\right)$.

In view of possible applications to the representation theory we introduce the involution ' + ' in $W_{2 N}$ by means of the following relations:

$$
\begin{align*}
& q_{i}^{+}=-q_{i} \\
& p_{i}^{+}=p_{i} \tag{3a}
\end{align*} \quad \text { for } i=1,2, \ldots, N .
$$

Similarly, the involution ' + ' on $U\left(\tilde{g}_{0}\right)$ is defined by

$$
\begin{equation*}
Y^{+}=-Y \quad \text { for } Y \in g_{0} \tag{3b}
\end{equation*}
$$

These involutions define naturally an involution on $W_{2 N} \otimes U\left(\tilde{\mathbf{g}}_{0}\right)$:

$$
\begin{equation*}
\left(\sum \alpha_{j} \Pi_{j} \otimes g_{j}\right)^{+}=\sum \bar{\alpha}_{j} \Pi_{j}^{+} \otimes g_{j}^{+} \tag{3c}
\end{equation*}
$$

where $\Pi_{j} \in W_{2 N}$ and $g_{j} \in U\left(\tilde{g}_{0}\right)$.
Definition. Let g be a real Lie algebra and let ' + ' be the involution on $W_{2 N} \otimes U\left(\tilde{g}_{0}\right)$ described above. A realisation τ of g on $W_{2 N} \otimes U\left(\tilde{g}_{0}\right)$ is called skew-Hermitian if
for all elements $X \in g$ the following relation holds:

$$
\begin{equation*}
(\tau(X))^{+}=-\tau(X) \tag{4}
\end{equation*}
$$

The algebra so $(2 n, \mathbb{C})$ is the $n(2 n-1)$-dimensional complex Lie algebra with the standard basis $L_{i j}, i, j= \pm 1, \pm 2, \ldots, \pm n$, the elements of which obey

$$
\begin{equation*}
L_{t j}=-L_{-j,-1} \tag{5}
\end{equation*}
$$

and the commutation relations

$$
\begin{equation*}
\left[L_{i j}, L_{k l}\right]=\delta_{j k} L_{i l}-\delta_{i l} L_{k j}-\delta_{j,-1} L_{i,-k}+\delta_{i,-k} L_{-l, j} \tag{6}
\end{equation*}
$$

In appendix 1 we have specified an explicit form of the automorphisms which give the real forms of this algebra. Using these automorphisms we obtain for the algebras so $(q, 2 n-q)$ the following basis:

$$
\begin{align*}
& L_{s t} \\
& X_{\alpha \beta}=\left(L_{\alpha \beta}-L_{\beta \alpha}\right) \\
& Y_{\alpha \beta}=\mathrm{i}\left(L_{\alpha \beta}+L_{\beta \alpha}\right) \tag{7}\\
& X_{s \alpha}=\left(L_{s \alpha}+L_{s,-\alpha}\right) \\
& Y_{s \alpha}=\mathrm{i}\left(L_{s \alpha}-L_{s,-\alpha}\right)
\end{align*}
$$

where $s, t= \pm 1, \pm 2, \ldots, \pm q$ and $\alpha, \beta= \pm(q+1), \pm(q+2), \ldots, \pm n$. The commutation relations in this basis are introduced in appendix 2 .

For $b=L_{11}$ we define a decomposition of the algebra so $(q, 2 n-q)$ as

$$
\begin{align*}
& g=n_{+}^{b} \oplus g_{0}^{b} \oplus n_{-}^{b} \\
& n_{+}^{b}=\mathbb{R}\left\{X \in g ;[b, X]=\alpha_{X} X \text { where } \alpha_{X}>0\right\} \\
& g_{0}^{b}=\mathbb{R}\{X \in g ;[b, X]=0\} \tag{8}\\
& n_{-}^{b}=\mathbb{R}\left\{X \in g ;[b, X]=-\alpha_{X} X \text { where } \alpha_{X}>0\right\} .
\end{align*}
$$

We use these decompositions as a starting point for our construction (see also Burdík 1985, §4).

3. Construction of realisations

Using the commutation relations (see appendix 2) we can bring the decomposition (8) into the form:

$$
\begin{align*}
& n_{+}^{b}=\mathbb{R}\left\{L_{1 i}, X_{1 \alpha}, Y_{1 \alpha}\right\} \\
& g_{0}^{b}=\mathbb{R}\left\{L_{11}, L_{i j}, X_{\alpha \beta}, Y_{\alpha \beta}, X_{i \alpha}, Y_{i \alpha}\right\} \tag{9}\\
& n_{-}^{b}=\mathbb{R}\left\{L_{i 1}, X_{\alpha 1}, Y_{\alpha 1}\right\}
\end{align*}
$$

where again $i, j= \pm 2, \pm 3, \ldots, \pm q$ and $\alpha, \beta= \pm(q+1), \pm(q+2), \ldots, \pm n$. The relation (5) implies that the basis of \tilde{n}_{+}^{b} is formed by the following ($2 n-2$) elements:

$$
\left|\begin{array}{llll}
L_{12} & L_{13} & \ldots & L_{1 q} \tag{10}\\
L_{1,-2} & L_{1,-3} & \ldots & L_{1,-q} \\
X_{1, q+1} & X_{1, q+2} & \ldots & X_{1, n} \\
Y_{1, q+1} & X_{1, q+2} & \ldots & Y_{1, n}
\end{array}\right|
$$

We introduce an ordering in the above basis in which its elements are ordered lexicographically. The monomials of $U\left(\tilde{n}_{+}^{b}\right)$ can then be written as the matrices

$$
\begin{align*}
& \left|\begin{array}{llll}
n_{2}^{L} & n_{3}^{L} & \ldots & n_{q}^{L} \\
n_{-2}^{L} & n_{-3}^{L} & \ldots & n_{-q}^{L} \\
n_{q+1}^{X} & n_{q+2}^{X} & \ldots & n_{n}^{X} \\
n_{q+1}^{X} & n_{q+2}^{Y} & \ldots & n_{n}^{Y}
\end{array}\right| \\
& =\left(L_{12}^{n_{2}^{L}}, \ldots, L_{1,}^{n_{q}^{L}}\right)\left(L_{1,-2}^{n_{1}^{L}}, \ldots, L_{1,-q}^{n_{1}^{L}}\right)\left(X_{1, q+1}^{n_{q+1}^{X}}, \ldots, X_{1, n}^{n_{n}^{X}}\right)\left(Y_{1, q+1}^{n_{i+1}^{\curlyvee}}, \ldots, Y_{1 n}^{n_{n}^{\gamma}}\right) \tag{11}
\end{align*}
$$

where of course $n_{i}^{L}, n_{\alpha}^{X}, n_{\alpha}^{Y}$ belongs to N_{0}, the set of all non-negative integers.
Now we are able to apply the general construction described in Burdík (1985). Let σ be an auxiliary representation of the algebra $g_{0}^{b} \oplus n_{-}^{b}$ on a vector space V such that

$$
\begin{align*}
& \sigma\left(n_{-}^{b}\right)=0 \\
& \sigma\left(g_{0}^{b}\right) \text { is faithful. } \tag{12}
\end{align*}
$$

We denote by W the carrier space of the induced representation $\rho=\operatorname{ind}(g, \sigma)$. If v_{1}, \ldots, v_{d} is a basis in the space V, then the vectors

$$
\left|\begin{array}{lll}
n_{2}^{L} & \ldots & n_{q}^{L} \tag{13}\\
n_{-2}^{L} & \ldots & n_{-q}^{L} \\
n_{q+1}^{X} & \ldots & n_{n}^{X} \\
n_{q+1}^{Y} & \ldots & n_{n}^{Y}
\end{array}\right| \otimes v_{i}
$$

form a basis W.
We define the creation and annihilation operators $\bar{a}_{\alpha}^{X}, a_{\alpha}^{X}$ on the space W in the following way:
$\bar{a}_{\alpha}^{X}\left|\begin{array}{llll}n_{2}^{L} & \ldots & n_{q}^{L} \\ n_{-2}^{L} & \ldots & n_{-q}^{L} \\ n_{q+1}^{X} & \ldots n_{\alpha}^{X} & \ldots & n_{n}^{X} \\ n_{q+1}^{Y} & \ldots & n_{n}^{Y}\end{array}\right| \otimes v_{i}=\left|\begin{array}{lll}n_{2}^{L} & \ldots & n_{q}^{L} \\ n_{-2}^{L} & \ldots & n_{-q}^{L} \\ n_{q+1}^{X} & \ldots & n_{\alpha}^{X}+1 \ldots \\ n_{q+1}^{Y} & \ldots & n_{n}^{X} \\ n_{q}^{Y}\end{array}\right| \otimes v_{i}$
$a_{\alpha}^{X}\left|\begin{array}{lll}n_{2}^{L} & \ldots & n_{-q}^{L} \\ n_{-2}^{L} & \ldots & n_{-q}^{L} \\ n_{q+1}^{X} & \ldots n_{\alpha}^{X} & \ldots \\ n_{n}^{X} \\ n_{q+1}^{Y} & \ldots & n_{n}^{Y}\end{array}\right| \otimes v_{1}=n_{\alpha}^{X}\left|\begin{array}{lll}n_{2}^{L} & \ldots & n_{q}^{L} \\ n_{-2}^{L} & \ldots & n_{-q}^{L} \\ n_{q+1}^{X} & \ldots & n_{\alpha}^{X}-1 \ldots \\ n_{q+1}^{Y} & \ldots & n_{n}^{X} \\ n_{n}^{Y}\end{array}\right| \otimes v_{i}$
and similarly we define the operators $\bar{a}_{\alpha}^{Y}, a_{\alpha}^{Y}, \bar{a}_{i}^{L}, a_{1}^{L}$ and $\bar{a}_{-i}^{L}, a_{-i}^{L}$ for any $\alpha=$ $(q+1), \ldots, n ; i=2,3, \ldots, q$. For any $\alpha=(q+1),(q+2), \ldots$, we put

$$
\bar{a}_{-\alpha}^{X}=\bar{a}_{\alpha}^{X} \quad \bar{a}_{-\alpha}^{Y}=-\bar{a}_{\alpha}^{Y} \quad a_{-\alpha}^{X}=-a_{\alpha}^{X} \quad a_{-\alpha}^{Y}=-a_{\alpha}^{Y} .
$$

Furthermore we define the operators \tilde{X} for any $X \in g_{0}^{b}$ by the relation

$$
\begin{equation*}
\tilde{X}=1 \otimes \sigma(X) \tag{14b}
\end{equation*}
$$

According to theorem 1 of Burdík (1985) the induced representation $\rho=\operatorname{ind}(g, \sigma)$ can be rewritten using the operators ($14 a, b$) defined above. We get the formulae

$$
\begin{align*}
& \rho\left(L_{11}\right)=\sum_{k=2}^{q}\left(\bar{a}_{k}^{L} a_{k}^{L}+\bar{a}_{-k}^{L} a_{-k}^{L}\right)+\sum_{\alpha=q+1}^{n}\left(\bar{a}_{\alpha}^{X} a_{\alpha}^{X}+\bar{a}_{\alpha}^{Y} a_{\alpha}^{Y}\right)+L_{11} \\
& \rho\left(L_{i j}\right)=-\bar{a}_{j}^{L} a_{i}^{L}+\bar{a}_{-i}^{L} a_{j}^{L}+L_{i j} \\
& \rho\left(X_{\alpha \beta}\right)=-\bar{a}_{\beta}^{X} a_{\alpha}^{X}+\bar{a}_{\alpha}^{X} a_{\beta}^{X}-\bar{a}_{\beta}^{Y} a_{\alpha}^{Y}+\bar{a}_{\alpha}^{Y} a_{\beta}^{Y}+X_{\alpha \beta} \\
& \rho\left(Y_{\alpha \beta}\right)=-\bar{a}_{\beta}^{Y} a_{\alpha}^{X}-\bar{a}_{\alpha}^{Y} a_{\beta}^{X}+\bar{a}_{\beta}^{X} a_{\alpha}^{Y}+\bar{a}_{\alpha}^{X} a_{\beta}^{Y}+Y_{\alpha \beta} \tag{15}\\
& \rho\left(X_{i \alpha}\right)=-\bar{a}_{\alpha}^{X} a_{i}^{L}+2 \bar{a}_{-1}^{L} a_{\alpha}^{X}+X_{i \alpha} \\
& \rho\left(Y_{i \alpha}\right)=-\bar{a}_{\alpha}^{Y} a_{i}^{L}+2 a_{-1}^{L} a_{\alpha}^{Y}+Y_{t a}
\end{align*}
$$

where $i, j= \pm 2, \pm 3, \ldots, \pm q$ and $\alpha, \beta= \pm(q+1), \ldots, \pm n$ and further

$$
\rho\left(L_{12}\right)=a_{2}^{L}
$$

$\rho\left(L_{21}\right)=-\rho\left(L_{11}\right) a_{2}^{L}+\sum_{k=2}^{q} \bar{a}_{-2}^{L} a_{-k}^{L} a_{k}^{L}+\sigma\left(L_{2 k}\right) a_{k}^{L}+\sigma\left(L_{2,-k}\right) a_{-k}^{L}$

$$
+\sum_{\alpha=q+1}^{n} \sigma\left(X_{2 \alpha}\right) a_{\alpha}^{X}+\sigma\left(Y_{2 \alpha}\right) a_{\alpha}^{Y}-\bar{a}_{-2}^{L}\left(\bar{a}_{\alpha}^{X} a_{\alpha}^{X}+\bar{a}_{\alpha}^{Y} a_{\alpha}^{Y}\right) .
$$

We obtain the representation of the remaining generators using the commutation rules (see appendix 2).

Now the skew-Hermitian realisations sought are obtained easily by replacing the operators in the above expressions by suitable algebraic objects:

$$
\begin{align*}
& \bar{a} \rightarrow q \\
& a \rightarrow p \tag{16}\\
& \sigma(X) \rightarrow X
\end{align*}
$$

For details, see Burdík (1985, § 3). They are given by the formulae

$$
\begin{align*}
& \tau\left(L_{11}\right)=\sum_{k=2}^{q}\left(q_{k}^{L} p_{k}^{L}+q_{-k}^{L} p_{-k}^{L}\right)+\sum_{\alpha=q+1}^{n} q_{\alpha}^{X} p_{\alpha}^{X}+q_{\alpha}^{Y} p_{\alpha}^{Y}+L_{11}+(n-1) \\
& \tau\left(L_{i j}\right)=-q_{j}^{L} p_{i}^{L}+q_{-i}^{L} p_{-j}^{L}+L_{i j} \\
& \tau\left(X_{\alpha \beta}\right)=-q_{\beta}^{X} p_{\alpha}^{X}+q_{\alpha}^{X} p_{\beta}^{X}-q_{\beta}^{Y} p_{\alpha}^{Y}+q_{\alpha}^{Y} p_{\beta}^{Y}+X_{\alpha \beta} \\
& \tau\left(Y_{\alpha \beta}\right)=-q_{\beta}^{Y} p_{\alpha}^{X}-q_{\alpha}^{Y} p_{\beta}^{X}+q_{\beta}^{X} p_{\alpha}^{Y}+q_{\alpha}^{X} p_{\beta}^{Y}+Y_{\alpha \beta} \tag{17}\\
& \tau\left(X_{i \alpha}\right)=-q_{\alpha}^{X} p_{i}^{L}+2 q_{-1}^{L} p_{\alpha}^{X}+X_{i \alpha} \\
& \tau\left(Y_{i \alpha}\right)=-q_{\alpha}^{Y} p_{i}^{L}+2 q_{-,}^{L} p_{\alpha}^{Y}+Y_{i \alpha}
\end{align*}
$$

where $i, j= \pm 2, \pm 3, \ldots, \pm q ; \alpha= \pm(q+1), \pm(q+2), \ldots, \pm n$, and further

$$
\begin{gathered}
\tau\left(L_{12}\right)=q_{2}^{L} \\
\tau\left(L_{21}\right)=-\tau\left(L_{11}\right) p_{2}^{L}+\sum_{k=2}^{q} q_{-2}^{L} p_{-k}^{L} p_{k}^{L}+p_{k}^{L} L_{2 k}+p_{-k}^{L} L_{2 .-k} \\
+\sum_{\alpha=q+1}^{n}\left(X_{2 \alpha}\right) p_{\alpha}^{X}+\left(Y_{2 \alpha}\right) p_{\alpha}^{Y}-q_{-2}^{L}\left(p_{\alpha}^{X} p_{\alpha}^{X}+p_{\alpha}^{Y} p_{\alpha}^{Y}\right)
\end{gathered}
$$

The element $b=L_{11}$ has the same meaning as the element b from Burdík (1985). Therefore, we can apply theorem 3 of that paper to the realisations (17) thus obtaining the following proposition.

Proposition. τ are Schur-realisations of $\operatorname{so}(q, 2 n-q)$ in the $W_{2 N} \otimes$ $U(\operatorname{gl}(1, \mathbb{R}) \oplus \operatorname{so}(q-1,2 n-q-1))$.

4. Discussion

Explicit forms of realisations for so($n, 2$) have been constructed by Le Blanc and Rowe (1986) using the method of coherent state representation. These realisations are defined by means of n canonical pairs and generators of a subalgebra so $(n) \oplus$ so(2). Another class of realisations has been described by Havlíček and Exner (1977); in their paper, realisations of so (m, n) are given in terms of $(m+n-2)$ canonical pairs and generators of so $(m-1, n-1) \oplus g l(1, \mathbb{R})$. Also the realisations given in the present paper are similar to those given explicitly in the papers mentioned, but we cannot give explicitly the relation which transforms these realisations from one to another.

Appendix 1

For any $q=1,2, \ldots, n$ we define linear mappings θ_{q} on \tilde{g} in this way:

$$
\begin{aligned}
& \theta_{q}\left(L_{\mathrm{st}}\right)=-L_{t s} \\
& \theta_{q}\left(L_{\mathrm{s}, \alpha}\right)=-L_{-\alpha, s} \\
& \theta_{q}\left(L_{\alpha, \beta}\right)=L_{\alpha \beta}
\end{aligned} \quad \theta_{q}\left(L_{\alpha, s}\right)=-L_{s,-\alpha}
$$

where $s, t= \pm 1, \pm 2, \ldots, \pm q$ and $\alpha, \beta= \pm(q+1), \ldots, \pm n$.
For $n=2 q+1$ odd we define further

$$
\begin{array}{ll}
\theta^{\prime}\left(L_{\mathrm{s}}\right)=L_{s+q_{,, r}+q_{t}} & \\
\theta^{\prime}\left(L_{s, t+q_{t}}\right)=L_{s+q_{,, t}} & \theta^{\prime}\left(L_{s+q_{, k}}\right)=L_{s, t+q_{t}} \\
\theta^{\prime}\left(L_{s, \alpha}\right)=-L_{s+q_{, \alpha}} & \theta^{\prime}\left(L_{s+q_{, \alpha}}\right)=L_{s, a} \\
\theta^{\prime}\left(L_{\alpha \alpha}\right)=L_{\alpha \alpha} &
\end{array}
$$

where $s, t= \pm 1, \pm 2, \ldots, \pm q, \alpha= \pm n$ and $q_{s}=q \operatorname{sgn} s$, and consequently for $n=2 q$ even we define

$$
\begin{aligned}
& \theta^{\prime \prime}\left(L_{s, t}\right)=L_{\mathrm{s}+q_{,}, t+q_{1}} \\
& \theta^{\prime \prime}\left(L_{s, t}+q_{1}\right)=L_{s+q_{, 1}} \quad \theta^{\prime \prime}\left(L_{s+q_{, 1}}\right)=L_{\mathrm{s}, t+q_{1}}
\end{aligned}
$$

where $s, t= \pm 1, \pm 2, \ldots, \pm q$.
Using the antilinear mapping

$$
\psi\left(L_{i k}\right)=-L_{k l}
$$

we can give for any linear mapping θ

$$
g_{\theta}=\{X \in \tilde{g}, \theta \circ \psi(X)=X\} .
$$

Theorem. The linear mappings $\theta^{\prime}, \theta^{\prime \prime}, \theta_{4}$ are Cartan automorphisms on g. Further, the algebras $g_{\theta^{\prime}}, g_{\theta^{\prime \prime}}$ are isomorphic so* $(2 n)$ and the algebra $g_{\theta_{i}}$ is isomorphic so $(q, 2 n-q)$ for any $q=1,2, \ldots, n$.

Proof. The proof is straightforward. See Helgasson (1962) for the method and Burdik (1986c) for detailed calculations in this case.

Appendix 2

Using the relations (6) we can compute commutation relations in the basis (7). In this appendix we give their explicit form:

$$
\begin{aligned}
& {\left[L_{l j}, L_{k l}\right]=\delta_{l h} L_{l l}-\delta_{l \mid} L_{k j}-\delta_{j,-l} L_{l .-h}+\delta_{l,-k} L_{-l /}} \\
& {\left[L_{i j}, X_{k \alpha}\right]=\delta_{j k} X_{t a}-\delta_{t,-k} X_{-,, c} \quad\left[L_{l,}, X_{\alpha \beta}\right]=0} \\
& {\left[L_{i j}, Y_{k \alpha}\right]=\delta_{j k} Y_{i \alpha}+\delta_{i,-k} Y_{-j, \alpha} \quad\left[L_{i}, Y_{\alpha \beta}\right]=0} \\
& {\left[X_{t \alpha}, X_{j \beta}\right]=-\delta_{i,-j} X_{\alpha \beta}+\delta_{i,-j} X_{\alpha,-\beta}-2\left(\delta_{\alpha \beta}+\delta_{\alpha,-\beta}\right) L_{i,-,}} \\
& {\left[X_{i \alpha}, Y_{j \beta}\right]=-\delta_{i,-j} Y_{\alpha \beta}+\delta_{t,-j} Y_{\alpha,-\beta}} \\
& {\left[Y_{1 \alpha}, Y_{\jmath \beta}\right]=-\delta_{i,-j} X_{\alpha \beta}+\delta_{i,-j} X_{\alpha,-\beta}-2\left(\delta_{\alpha \beta}-\delta_{\alpha,-\beta}\right) L_{i,-\jmath}} \\
& {\left[X_{i \alpha}, X_{\beta \gamma}\right]=\left(\delta_{\alpha \beta}+\delta_{\alpha,-\beta \beta}\right) X_{i \gamma}-\left(\delta_{\alpha \gamma}+\delta_{\alpha,-\gamma}\right) X_{i \beta}} \\
& {\left[X_{i \alpha}, Y_{\beta \gamma}\right]=\left(\delta_{\alpha \beta}+\delta_{\alpha,-\beta}\right) Y_{i \gamma}+\left(\delta_{\alpha \gamma}+\delta_{-\alpha, \gamma}\right) Y_{i \beta}} \\
& {\left[Y_{i \alpha}, Y_{\beta \gamma}\right]=-\left(\delta_{\alpha \beta}-\delta_{\alpha,-\beta}\right) X_{i \gamma}-\left(\delta_{\alpha \gamma}-\delta_{\alpha,-\gamma}\right) X_{i \beta}} \\
& {\left[Y_{i \alpha}, X_{\beta \gamma}\right]=\left(\delta_{\alpha \beta}-\delta_{\alpha,-\beta}\right) Y_{i \gamma}-\left(\delta_{\alpha \gamma}-\delta_{\alpha,-\gamma}\right) Y_{i \beta}} \\
& {\left[X_{\alpha \beta}, X_{\gamma \delta}\right]=\delta_{\beta \gamma} X_{\alpha \delta}-\delta_{\alpha \delta} X_{\gamma \beta}-\delta_{\beta,-\delta} X_{\alpha,-\gamma}+\delta_{\alpha,-,} X_{-\delta, \beta}} \\
& {\left[X_{\alpha \beta}, Y_{\gamma \delta}\right]=\delta_{\beta \gamma} Y_{\alpha \delta}-\delta_{\alpha \delta} Y_{\gamma \beta}-\delta_{\beta,-\delta} Y_{\alpha,-\gamma}+\delta_{\alpha,-\gamma} X_{-\delta, \beta}} \\
& {\left[Y_{\alpha \beta}, Y_{\gamma \delta}\right]=-\delta_{\beta \gamma} X_{\alpha \delta}+\delta_{\alpha \delta} X_{\gamma \beta}+\delta_{\beta .-\delta} X_{\kappa,-\gamma}-\delta_{\alpha,-\gamma} X_{-\delta, \beta}}
\end{aligned}
$$

where $i, j, k, l= \pm 1, \pm 2, \ldots, \pm q$ and $\alpha, \beta, \gamma, \delta= \pm(q+1), \pm(q+2), \ldots, \pm n$.

References

Barut A and Raczka R 1977 Theory of Group Representations and Applications (Warsaw: PWN) Le Blanc R and Rowe D J 1986 J. Phys. A: Math. Gen. 191111
Burdík 1985 J. Phys. A: Math. Gen. 183101
_— 1986a J. Phys. A: Math. Gen. 192465

- 1986b Czech. J. Phys. B 361235
- 1986c Preprint JINR, Dubna E5-86-451

Dixmier J 1974 Algebras Envellopantes (Paris: Gauthier-Villars)
Exner P and Havlíček M 1975 Ann. Inst. H Poincaré 23335
Helgasson S 1962 Differential Geometry and Symmetric Spaces (New York: Academic)
Moshinsky M 1984 J. Math. Phys. 255
Zhelobenko D P and Stern A S 1983 Representations of Lie Groups (Moscow: Nauka)

[^0]: \dagger Permanent address: Nuclear Centre, Faculty of Mathematics and Physics, Charles University, V Holešovičkách 2, 18000 Praha 8, Czechoslovakia.

